

FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Technology

Semester II

Course Code: 102320206

Course Title: Computer Integrated Manufacturing

Type of Course: Program Elective III

Course Objectives: To Provide insight into high end technologies used to automate manufacturing operations using computerized integration of product design, Process planning, production, distribution, and management.

Teaching & Examination Scheme:

Contact hours per week			Course Examination Marks (Maximum /			mum / Pa	ssing)	
Locturo	Tutorial	Practical	Credits	Inte	rnal	Exte	rnal	Total
Lecture	Tutorial	Flattital		Theory	J/V/P*	Theory	J/V/P*	IUtai
3	0	2	4	30/15	20/10	70/35	30/15	150/75

* **J**: Jury; **V**: Viva; **P**: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Introduction:	05
	Automated Manufacturing Systems, Computerized Manufacturing Support Systems, Reasons for Automation, Different Automation Strategies, The Scope of CAD/CAM and CIM	
2	Automated Flow lines:	05
	System Configurations, Workpart Transfer Mechanisms, Storage Buffers, Control of	
	Production Line, Analysis of Transfer Lines-Transfer Lines with No Internal Parts	
	Storage, Transfer Lines with Internal Storage Buffers.	
3	Manual Assembly Lines:	06
	Assembly Workstations, Work Transport Systems, Line Pacing, Coping With	
	Product Variety, Analysis of Single Model Assembly Lines-Repositioning Losses,	
	The Line Balancing Problem, Line Balancing Algorithms-Largest Candidate Rule,	
	Kilbridge and Wester Method, Ranked Positional Weights Method.	
4	Automated Assembly Systems:	04
	System Configurations, Parts Delivery at Workstations, Applications, Quantitative	
	Analysis of Assembly Systems- Parts Delivery System at Workstations, Multi-	
	station Assembly machines, Single Station Assembly Machines, Partial Automation.	

Page **1** of **3**

Opp. Shastri Maidan, Beside BVM College, Vallabh Vidyanagar, Dist: Anand, Gujarat - 388120 (O): 02692-238001 | Email: adminoffice@cvmu.edu.in | www.cvmu.edu.in

5	Automatic Material Handling and Storage systems:	04		
	Design Considerations in Material Handling, Material Transport Equipment-			
	Industrial Trucks, Automated Guided Vehicles, Monorails and Other Rail-Guided			
	Vehicles, Conveyors, Cranes and Hoists, Analysis of Vehicle Based Systems,			
	Conveyor Analysis. Engineering Analysis of AS/RS and Carousel Systems.			
6	Automated Inspection systems:	05		
	Overview of Automated Identification Methods, Bar Code Technology, Radio			
	Frequency Identification, Other AIDC Technologies-Mangnetic Stripes, Optical			
	Character Recognition, and Machine Vision.			
7	Computer Aided Process Planning:	04		
	Retrieval CAPP Systems, Generative CAPP Systems, Graph Based Approach,			
	Attribute Adjacency Graph, Benefits of CAPP.			
8	Flexible Manufacturing Systems:	06		
	Types of flexibility, types of FMS, FMS components, FMS Components-			
	Workstations, Material Handling and Storage Systems, Computer Control System,			
	Human Recourses, FMS Applications and Benefits., Quantitative analysis of FMS,			
	Sizing the FMS, System performance measure.			

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks					S	R : Remembering; U : Understanding; A : Application,
R	U	Α	Ν	Ε	С	N: Analyze; E: Evaluate; C: Create
15	15	25	20	15	10	
	- 1		. 11			

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1	Automation, production Systems and Computer Integrated Manufacturing, Mikell P Groover,
	Prentice Hall.
2	System Approach to Computer Integrated Manufacturing, Nanua Singh, Wiley & Sons Inc.
3	Intelligent Manufacturing System, Andrew Kusiak, Prentice Hall Inc.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Gain an overall understanding of automated systems integration.	25
CO-2	Be able to use and program programmable controllers, robots and CNC machines in an integrated system.	35
CO-3	Be able to develop interfaces necessary to integrate machines with a conveyor system and a host control system for a flexible manufacturing system.	20
CO-4	Demonstrate their understanding by producing a product through an integrated flexible manufacturing system and documenting the results	20

Page 2 of 3

Opp. Shastri Maidan, Beside BVM College, Vallabh Vidyanagar, Dist: Anand, Gujarat - 388120 (O): 02692-238001 | Email: adminoffice@cvmu.edu.in | www.cvmu.edu.in

List of Practicals / Tutorials:

1	Problems on automated flow lines
2	Problems on line balancing, Ranked Positional Weights Method etc. for manual assembly
	lines
3	Problems on automated assembly systems
4	Problems on quantitative analysis of FMS
5	Sizing problems on FMS
6	STL file format reading and use of related algorithm for its manipulation
7	Problems on scheduling for CIM
8	Exercise on automated inspection system
9	Exercise on automated material handling system
10	Exercise on automated storage and retrieval system
11	Open ended problem of flexible manufacturing system

Supplementary learning Material:

Curriculum Revision:				
Version:	1			
Drafted on (Month-Year):	Apr-20			
Last Reviewed on (Month-Year):	Jul-20			
Next Review on (Month-Year):	Apr-22			

Page 3 of 3

Opp. Shastri Maidan, Beside BVM College, Vallabh Vidyanagar, Dist: Anand, Gujarat - 388120 (O): 02692-238001 | Email: adminoffice@cvmu.edu.in | www.cvmu.edu.in